kids encyclopedia robot

Concussion facts for kids

Kids Encyclopedia Facts
Concussion mechanics
A diagram of the forces on the brain in concussion

Concussion, also known as minor head trauma or mild traumatic brain injury (mTBI) is the most common type of traumatic brain injury. It is typically defined as a head injury with a temporary loss of brain function. Symptoms include a variety of physical, cognitive, and emotional symptoms, which may not be recognized if subtle. A variety of signs accompany concussion including headache, feeling in a fog, and emotional changeability. In general, the signs can be categorized into physical signs (such as loss of consciousness or amnesia), behavioral changes (such as irritability), cognitive impairment (such as slowed reaction times), and sleep disturbances. Fewer than 10% of sports-related concussions among children are associated with loss of consciousness.

Common causes include sports injuries, bicycle accidents, car accidents, and falls, the latter two being the most frequent causes among adults. In addition to a blow to the head, concussion may be caused by acceleration forces without a direct impact, and on the battlefield, MTBI is a potential consequence of nearby explosions. It is not clear exactly what damage is done and how the symptoms are caused, but stretching of axons and changes in ion channels are involved. Cellular damage has reportedly been found in concussed brains, but it may have been due to artifacts from the studies. It is currently thought that structural and neuropsychiatric factors may both be responsible for the effects of concussion.

Treatment involves monitoring as well as physical and cognitive rest (reduction of such activities as school work, playing video games and text messaging). Symptoms usually resolve within three weeks, though they may persist or complications may occur.

The rate at which concussion occurs is not accurately known, but is estimated to be more than 6 per 1,000 people. Those who have had one concussion seem more susceptible to another, especially if the new injury occurs before symptoms from the previous concussion have completely resolved. There is also a negative progressive process in which smaller impacts cause the same symptom severity. Repeated concussions may increase the risk in later life for dementia, Parkinson's disease, or depression.

Signs and symptoms

Concussion is associated with a variety of symptoms, which typically occur rapidly after the injury. Early symptoms usually subside within days or weeks. The number and type of symptoms any one individual suffers varies widely.

Physical

Headache is the most common MTBI symptom. Others include dizziness, vomiting, nausea, lack of motor coordination, difficulty balancing, or other problems with movement or sensation. Visual symptoms include light sensitivity, seeing bright lights, blurred vision, and double vision. Tinnitus, or a ringing in the ears, is also commonly reported. In one in about seventy concussions, concussive convulsions occur, but seizures that take place during or immediately after concussion are not "post-traumatic seizures", and, unlike post-traumatic seizures, are not predictive of post-traumatic epilepsy, which requires some form of structural brain damage, not just a momentary disruption in normal brain functioning. Concussive convulsions are thought to result from temporary loss or inhibition of motor function, and are not associated either with epilepsy or with more serious structural damage. They are not associated with any particular sequelae, and have the same high rate of favorable outcomes as concussions without convulsions.

Cognitive and emotional

Cognitive symptoms include confusion, disorientation, and difficulty focusing attention. Loss of consciousness may occur, but is not necessarily correlated with the severity of the concussion if it is brief. Post-traumatic amnesia, in which events following the injury cannot be recalled, is a hallmark of concussion. Confusion, another concussion hallmark, may be present immediately or may develop over several minutes. A person may repeat the same questions, be slow to respond to questions or directions, have a vacant stare, or have slurred or incoherent speech. Other MTBI symptoms include changes in sleeping patterns and difficulty with reasoning, concentrating, and performing everyday activities.

Concussion can result in changes in mood including crankiness, loss of interest in favorite activities or items, tearfulness, and displays of emotion that are inappropriate to the situation. Common symptoms in concussed children include restlessness, lethargy, and irritability.

Mechanism

Gatica1
Rotational force is key in concussion. Punches in boxing can deliver more rotational force to the head than the typical impact in American football

The brain is surrounded by cerebrospinal fluid, which protects it from light trauma. More severe impacts, or the forces associated with rapid acceleration, may not be absorbed by this cushion. Concussion may be caused by impact forces, in which the head strikes or is struck by something, or impulsive forces, in which the head moves without itself being subject to blunt trauma (for example, when the chest hits something and the head snaps forward).

Forces may cause linear, rotational, or angular movement of the brain, or a combination of them. In rotational movement, the head turns around its center of gravity, and in angular movement it turns on an axis not through its center of gravity. The amount of rotational force is thought to be the major component in concussion and its severity. Studies with athletes have shown that the amount of force and the location of the impact are not necessarily correlated with the severity of the concussion or its symptoms, and have called into question the threshold for concussion previously thought to exist at around 70–75 g.

The parts of the brain most affected by rotational forces are the midbrain and diencephalon. It is thought that the forces from the injury disrupt the normal cellular activities in the reticular activating system located in these areas, and that this disruption produces the loss of consciousness often seen in concussion. Other areas of the brain that may be affected include the upper part of the brain stem, the fornix, the corpus callosum, the temporal lobe, and the frontal lobe.

Pathophysiology

In both animals and humans, MTBI can alter the brain's physiology for hours to years, setting into motion a variety of pathological events. As one example, in animal models, after an initial increase in glucose metabolism, there is a subsequent reduced metabolic state which may persist for up to four weeks after injury. Though these events are thought to interfere with neuronal and brain function, the metabolic processes that follow concussion are reversible in a large majority of affected brain cells; however, a few cells may die after the injury.

Included in the cascade of events unleashed in the brain by concussion is impaired neurotransmission, loss of regulation of ions, deregulation of energy use and cellular metabolism, and a reduction in cerebral blood flow. Excitatory neurotransmitters, chemicals such as glutamate that serve to stimulate nerve cells, are released in excessive amounts. The resulting cellular excitation causes neurons to fire excessively. This creates an imbalance of ions such as potassium and calcium across the cell membranes of neurons (a process like excitotoxicity).

At the same time, cerebral blood flow is relatively reduced for unknown reasons, though the reduction in blood flow is not as severe as it is in ischemia. Thus cells get less glucose than they normally do, which causes an "energy crisis".

Concurrently with these processes, the activity of mitochondria may be reduced, which causes cells to rely on anaerobic metabolism to produce energy, increasing levels of the byproduct lactate.

For a period of minutes to days after a concussion, the brain is especially vulnerable to changes in intracranial pressure, blood flow, and anoxia. According to studies performed on animals (which are not always applicable to humans), large numbers of neurons can die during this period in response to slight, normally innocuous changes in blood flow.

Axonal damage has been found in the brains of concussion sufferers who died from other causes, but inadequate blood flow to the brain due to other injuries may have contributed. Findings from a study of the brains of deceased NFL athletes who received concussions suggest that lasting damage is done by such injuries. This damage, the severity of which increases with the cumulative number of concussions sustained, can lead to a variety of other health issues.

The debate over whether concussion is a functional or structural phenomenon is ongoing. Structural damage has been found in the mildly traumatically injured brains of animals, but it is not clear whether these findings would apply to humans. Such changes in brain structure could be responsible for certain symptoms such as visual disturbances, but other sets of symptoms, especially those of a psychological nature, are more likely to be caused by reversible patho-physiological changes in cellular function that occur after concussion, such as alterations in neurons' biochemistry. These reversible changes could also explain why dysfunction is frequently temporary. A task force of head injury experts called the Concussion In Sport Group met in 2001 and decided that "concussion may result in neuropathological changes but the acute clinical symptoms largely reflect a functional disturbance rather than structural injury."

Diagnosis

Red flags are warning signs that may indicate a more serious problem
Red flag
Seizure
Worsening headache
Difficulty waking up
Seeing double
Problem recognizing people or places
Repeated vomiting
Focal neurological problems
Not usual self

Head trauma recipients are initially assessed to exclude a more severe emergency such as an intracranial hemorrhage. This includes the "ABCs" (airway, breathing, circulation) and stabilization of the cervical spine which is assumed to be injured in any athlete who is found to be unconscious after head or neck injury. Indications that screening for more serious injury is needed include worsening of symptoms such as headache, persistent vomiting, increasing disorientation or a deteriorating level of consciousness, seizures, and unequal pupil size. Those with such symptoms, or those who are at higher risk for a more serious brain injury, may undergo brain imaging to detect lesions and are frequently observed for 24 – 48 hours. A brain CT or brain MRI should be avoided unless there are progressive neurological symptoms, focal neurological findings or concern of skull fracture on exam.

Diagnosis of MTBI is based on physical and neurological examination findings, duration of unconsciousness (usually less than 30 minutes) and post-traumatic amnesia (PTA; usually less than 24 hours), and the Glasgow Coma Scale (MTBI sufferers have scores of 13 to 15). Neuropsychological tests exist to measure cognitive function and the international consensus meeting in Zurich recommended the use of the SCAT2 test.

Anizokoria
Unequal pupil size is a sign of a brain injury possibly more serious than concussion

Such tests may be administered hours, days, or weeks after the injury, or at different times to demonstrate any trend. Increasingly, athletes are also being tested pre-season to provide a baseline for comparison in the event of an injury, though this may not reduce risk or affect return to play.

Concussion may be under-diagnosed because of the lack of the highly noticeable signs and symptoms while athletes may minimize their injuries to remain in the competition. A retrospective survey in 2005 suggested that more than 88% of concussions are unrecognized. Diagnosis can be complex because concussion shares symptoms with other conditions.

Three grading systems have been most widely followed: by Robert Cantu, the Colorado Medical Society, and the American Academy of Neurology. Each employs three grades, as summarized in the following table:

Comparison of historic concussion grading scales – not currently recommended for use by medical professionals
Guidelines  Grade I Grade II Grade III
Cantu Post-traumatic amnesia <30 minutes, no loss of consciousness Loss of consciousness <5 minutes or amnesia lasting 30 minutes–24 hours Loss of consciousness >5 minutes or amnesia >24 hours
Colorado Medical Society Confusion, no loss of consciousness Confusion, post-traumatic amnesia, no loss of consciousness Any loss of consciousness
American Academy of Neurology Confusion, symptoms last <15 minutes, no loss of consciousness Symptoms last >15 minutes, no loss of consciousness Loss of consciousness (IIIa, coma lasts seconds, IIIb for minutes)

Prevention

Prevention of MTBI involves general measures such as wearing seat belts and using airbags in cars. Older people are encouraged to reduce fall risk by keeping floors free of clutter and wearing thin, flat, shoes with hard soles that do not interfere with balance.

Protective equipment such as headgear has been found to reduce the number of concussions in athletes and improvements in the design of helmets may decrease the number and severity further. New "Head Impact Telemetry System" technology is being placed in helmets to study injury mechanisms and may generate knowledge that will potentially help reduce the risk of concussions among American Football players. Self-reported concussion rates among U-20 and elite rugby union players in Ireland are 45-48%. Half of these injuries go unreported. Changes to the rules or enforcing existing rules in sports, such as those against "head-down tackling", or "spearing", which is associated with a high injury rate, may also prevent concussions.

Treatment

After exclusion of neck injury, observation should be continued for several hours. If repeated vomiting, worsening headache, dizziness, seizure activity, excessive drowsiness, double vision, slurred speech, unsteady walk, or weakness or numbness in arms or legs, or signs of basilar skull fracture develop, immediate assessment in an emergency department is warranted. After this initial period has passed, there is debate as to whether it is necessary to awaken the person several times during the first night, as has traditionally been done, or whether there is more benefit from uninterrupted sleep.

Physical and cognitive rest should be continued until all symptoms have resolved with most (80–90%) concussions resolving in seven to ten days, although the recovery time may be longer in children and adolescents. Cognitive rest includes reducing activities which require concentration and attention such as school work, video games, and text messaging. It has been suggested that even leisure reading can commonly worsen symptoms in children and adolescents and proposals include time off from school and attending partial days. Since students may appear 'normal', continuing education of relevant school personnel may be needed.

Those with concussion are generally prescribed rest, including adequate nighttime sleep as well as daytime rest. Rest includes both physical and cognitive rest until symptoms clear and a gradual return to normal activities at a pace that does not cause symptoms to worsen is recommended. Education about symptoms, their management, and their normal time course, can lead to an improved outcome.

For persons participating in athletics, the 2008 Zurich Consensus Statement on Concussion in Sport recommends that participants be symptom free before restarting and then progress through a series of graded steps. These steps include:

  • complete physical and cognitive rest
  • light aerobic activity (less than 70% of maximum heart rate)
  • sport-specific activities such as running drills and skating drills
  • non-contact training drills (exercise, coordination, and cognitive load)
  • full-contact practice
  • full-contact games.

Only when symptom-free for 24 hours, should progression to the next step occur. If symptoms occur, the person should drop back to the previous asymptomatic level for at least another 24 hours. The emphasis is on remaining symptom free and taking it in medium steps, not on the steps themselves.

Prognosis

People who have had a concussion seem more susceptible to another one, particularly if the new injury occurs before symptoms from the previous concussion have completely gone away. It is also a negative process if smaller impacts cause the same symptom severity. Repeated concussions may increase a person's risk in later life.

Images for kids

kids search engine
Concussion Facts for Kids. Kiddle Encyclopedia.